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Synthetic microswimmers are envisioned to be useful in numerous applications, many of which occur in
tightly confined spaces. It is therefore important to understand how confinement influences swimmer
dynamics. Here we study the motility of bimetallic microswimmers in linear and curved channels. Our
experiments show swimmer velocities increase, up to 5 times, with the degree of confinement, and the
relative velocity increase depends weakly on the fuel concentration and ionic strength in solution.
Experimental results are reproduced in a numerical model which attributes the swimmer velocity increase
to electrostatic and electrohydrodynamic boundary effects. Our work not only helps to elucidate the
confinement effect of phoretic swimmers, but also suggests that spatial confinement may be used as an
effective control method for them.
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Material transport at micro- or nanometer scales is
conventionally driven by externally imposed fields, such
as pressure or temperature [1,2]. In contrast, microorgan-
isms move autonomously without external driving; they
self-propel by converting local sources of energy into
mechanical work [3–8]. Many synthetic microswimmers
can mimic their biological counterparts in achieving
autonomous motion [3–10]. For example, Janus particles
generate local gradients of temperature [11], chemical
concentration [12–14], or electric potential [15–19] and
self-propel through respective phoretic mechanisms
[20–22]. These phoretic microswimmers have demon-
strated preliminary applications, such as cargo delivery
[23,24], chemical sensing [25,26], and water purification
[27,28]; they have also been recently used to explore the
nonequilibrium physics of active matter [13,14,29].
Microswimmers are often required to move through

narrow channel-like passages [30]. Hydrodynamic
swimmers in such strong confinement have been inves-
tigated. Experiments showed that Paramecium [31] and E.
coli bacteria [32] slow down in narrow channels; these
results were later reproduced numerically [33,34]. Wu et al.
showed numerically that amoeboid slows down in strong
confinement [35]. Other numerical studies predicted that
swimmer velocity may increase with confinement for a
squirmer driven by normal deformations [33], a Taylor-like
swimmer [36], and a rotating helix [37]. Ledesma et al. [38]
reported that elasticity of confining boundary may speed up
a dipolar swimmer. These studies show hydrodynamic
interaction with confinement can lead to rich swimmer
dynamics.
In contrast with the numerous studies of hydrodynamic

swimmers [31–38], the subject of synthetic swimmers in

confinement has remained largely unexplored until quite
recently. Synthetic swimmers are found to strongly interact
with boundaries, such as a flat plane [39–44], a corner
[42,43,45], a colloid crystal [46], or a spherical confine-
ment [47]. We are therefore motivated to investigate how
strongly confining channels affect synthetic swimmers,
particularly their motility. Our experiments show bimetallic
swimmers significantly increase their velocity in channels.
A numerical model reproduces our experimental results and
reveals that the channels influence swimmers through
electrostatic and electrohydrodynamic boundary effects.
This knowledge not only helps us better understand the
complex interplay between phoretic microswimmers and
their environment, but also suggests control strategies for
their practical applications in confined situations.
We fabricate two kinds of bimetallic microswimmers.

One contains Au and Ru segments of equal length, the
other Au and Rh segments. Both swimmers are rodlike and
have a diameter ds ¼ 0.3 μm and different length, denoted
as ls (1.8 to 3.7 μm). A two-photon direct laser writing
system fabricates microchannels with a submicron accu-
racy; the system’s efficiency and flexibility allow us to
systematically vary channel size and topology. Scanning
electron images and detailed fabrication procedures can be
found in the Supplemental Material [48]. After fabrication,
we immerse swimmers and channels in a solution contain-
ing hydrogen peroxide (H2O2, 5% to 30% by weight).
Swimmer motion in the sample is recorded through a 60×
objective at a rate of 30 frames per sec with a camera
(Basler acA2040-90um) and analyzed with standard par-
ticle tracking algorithms.
A bimetallic microswimmer propels through a self-

electrophoretic mechanism. As sketched in Fig. 1(a)
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(adapted from Ref. [18]), the oxidation and reduction of
H2O2 occur preferentially at the anode and cathode,
respectively. This results in an asymmetric distribution
of electric potential and creates a field around the swimmer.
The electric field then drives electro-osmotic flow on the
negatively charged swimmer and propels the swimmer with
the anode leading [15–19]. As shown in Fig. 1(c), an AuRu
swimmer moves at a velocity around 19.8 μm=s outside
channels in the open space or along a wall (the exterior
boundary of the channel) [42,43,45], and it doubles its
velocity after entering a linear and narrow channel with
dimensions of w ¼ 1.2 and h ¼ 2 μm [cf. Fig. 1(b)]. We
also test channels with different topologies; velocity
increase is robustly observed in a spiral channel with a
varying width and a square channel with segments of
different width (cf. Supplemental Material [48]).
We quantify this speed-up phenomenon by normalizing

the steady swimmer velocity in channels V by the velocity
outside, V∘. The normalized velocity V=V∘ in linear
channels is plotted versus the channel width for three sets
of channels of different heights in Fig. 1(d). Results from
spiral channels are similarly analyzed and shown in the

Supplemental Material [48]. In both linear and spiral
channels, a decrease in channel height or width leads to
a higher swimmer velocity. Plotting the normalized velocity
versus the channel cross-section area (h × w), we can
collapse data from channels of different heights into a
single curve, as shown in the inset of Fig. 1(d).
Bimetallic microswimmer motility can be tuned by

changing the concentration of H2O2 or by adding sodium
nitrate (NaNO3) to the solution; we take advantage of this
tunablity to further investigate the effect of driving strength
on confined swimmer motility. Concentrations of the two
chemicals modulate swimmer velocity by different mech-
anisms: the former (H2O2) determines the reaction rate on
the swimmer surface [53]; the latter (NaNO3) mainly
affects the system’s electrostatic properties, such as double
layer thickness and conductivity [54–57]. As shown in the
insets of Figs. 1(e) and 1(f), with either of the two methods,
we can change V∘ approximately by a factor of 2. However,
such changes in V∘ do not lead to noticeable variations of
the normalized swimmer velocity V=V∘, as shown in
Figs. 1(e)–1(f). To briefly summarize, experimental results
in Fig. 1 show that the swimmer velocity increase crucially

FIG. 1. Swimmer dynamics in linear channels. (a) Illustration of the self-electrophoretic propulsion mechanism. Orange and blue
represent high and low electric potentials, respectively. The electric field ~E points from the anode end to the cathode, where the anode
corresponds to the Au end in AuRu swimmers and the Rh end in AuRh swimmers. The white arrow indicates the direction of motion of
the swimmer. (b) Scanning electron image of linear channels with a length L, width w, and height h. In (c), a typical AuRu swimmer
trajectory is plotted on an optical image of channels; each dot represents an instantaneous position (separated by 1=30 sec in time) of the
swimmer and is color coded by the normalized swimmer velocity V=V∘ (see text). In (d), the normalized swimmer velocity V=V∘ is
plotted versus the channel width in the main frame and versus the channel cross-section area in the inset. (e) and (f) Normalized
swimmer velocity versus the concentrations of H2O2 and NaNO3. Swimmer velocity outside channels, V∘, is plotted in the insets. All
linear channels have the same length of L ¼ 16 μm. Solutions with 15% H2O2 are used to produce data in (c),(d), and (f). NaNO3 is only
used in experiments in (f). See supporting videos S1 to S4 in the Supplemental Material [48] for swimmer motion in different channels.
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depends on the channel geometry but not on the driving
strength.
To understand these findings and to investigate the

phenomenon in an extended parameter regime, we turn
to an electrokinetic numerical model, which was originally
used by Velegol et al. to study spherical self-electrophoretic
swimmers near a plane [39,58]. Our model assumes axial
symmetry. As shown in Fig. 2(a), a rodlike microswimmer
moves with a velocity V~ez along the center line of a circular
channel. The swimmer and the channel have respective zeta
potentials: ζs and ζc. The electric double layers are
assumed to be infinitely thin [19–22,56,58–61] and charge
neutrality decouples proton concentration from the model
that consists of electrostatic and electrohydrodynamic
parts. The electrostatic problem is defined by the
Laplace equation (∇2ϕ ¼ 0) for the electric potential ϕ
and the boundary conditions on solid surfaces. On the
swimmer [19,39,58,61], proton generation and absorption
on the anode and cathode, respectively, lead to normal
potential gradients: −ð∂ϕ=∂nÞ ¼ ðJkBT=2eDn∘Þ and
−ð∂ϕ=∂nÞ ¼ ð−JkBT=2eDn∘Þ, where J is the magnitude
of the proton flux and other parameters (kB, T, e,D, and n∘)

are defined in the Supplemental Material [48]. No reaction
occurs on the channel surface: ð∂ϕ=∂nÞ ¼ 0. The electro-
hydrodynamic problem is governed by the Stokes flow:
μ∇2~u −∇p ¼ 0 and ∇ · ~u ¼ 0, where μ is the fluid
viscosity. Flow boundary conditions are determined by
the solid motion and the slip electro-osmotic surface
flow [20]; we have ~u ¼ ðϵζc=μÞð I

↔
− ~n ~nÞ ·∇ϕ on the

stationary channel and ~u ¼ V~ez þ ðϵζs=μÞð I
↔
− ~n ~nÞ ·∇ϕ

on the swimmer, where I
↔
is the unit tensor and ϵ is the fluid

permittivity. Finally, the swimmer velocity V is determined
by the force balance condition: Fz¼ ~ez · ∲swimmer σ

↔
·d~S¼0,

where σ
↔

is the stress on the swimmer.
The model is solved by a finite-element package

(COMSOL Multiphysics). Implementation details and calibra-
tion studies can be found in the Supplemental Material
[48]. We use the following default parameters in simu-
lations unless specified otherwise: ds ¼ 0.3 μm, ls ¼
1.8 μm, lc ¼ 16 μm, dc ¼ 2 μm, J¼ 7×10−6mol=m2=s,
ζs ¼ −50 mV, and ζc ¼ −50 mV, where two swimmer
parameters (J and ζs) and the channel zeta potential (ζc) are
chosen according to measurements in Refs. [18,62] and
[63,64], respectively.

FIG. 2. (a) Schematic diagram of the model (not to scale). A cylindrical coordinate frame (r, z) is defined with the origin located at the
center of the swimmer; the local normal direction on the swimmer and channel surfaces is denoted as ~n. Dimensions of the swimmer and
channel are defined. The anode and cathode of the swimmer is shown in yellow and gray, respectively. (b)–(c) Electric potential and fluid
flow around a stalled swimmer (V ¼ 0) in channels. Lines in (b) and (c) represent the electric field and stream lines, respectively. To
produce results in Fig. 2(c), we set the swimmer zeta potential to zero (ζs ¼ 0) so that only electro-osmotic flow on the channel surface
(not on the swimmer surface) is generated. (d)–(e) Normalized swimmer velocity versus the channel width dc and the reaction flux J.
The legend of (d) shows the channel zeta potential used for each data set. Default values (see text) are used for simulation parameters that
are not specified in (b)–(e).
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The channel enters our model through the electrostatic
and electrohydrodynamic boundary conditions. To visual-
ize its effects, we plot the electric and flow fields around a
stalled swimmer (V ¼ 0). As shown in Fig. 2(b), the
channel screens the electric field; narrower channel leads
to a larger potential gradient and, therefore, stronger
electro-osmotic flow on the swimmer surface to facilitate
its motion in the ~ez direction. The second effect comes
from the negatively charged channel surface. As shown in
Fig. 2(c), the electric field generates a downward electro-
osmotic flow on the channel; this localized and confined
flow creates an upward backflow near the swimmer due to
fluid continuity. The backflow generates an upward force
on the stalled swimmer, which is 0.16 and 0.64 pN for the
case of dc ¼ 2 μm and dc ¼ 1.3 μm, respectively.
We next use the numerical model to reproduce two

experimental findings in Fig. 1. For a negatively charged
(ζc < 0) channel, the model predicts that the swimmer
velocity increases as the channel diameter decreases
[Fig. 2(d)], which agrees with experiments.
Quantitatively, in a linear channel with a cross section
area of 2 μm2, we have V=V∘ ≈ 2 from experiments
(cf. Fig. 1) and V=V∘ ¼ 2.8 from simulations with the
channel zeta potential ζc ¼ −50 mV [64]. Such an agree-
ment is acceptable, considering the assumptions made in
the model. Second, we change the proton flux J in
simulations to explore the effect of the driving strength.
As shown in Fig. 2(e), the swimmer velocities outside the
channel V∘ increase linearly with the flux J but the
normalized velocity V=V∘ is independent of the flux,
which is in agreement with the experimental results in
Figs. 1(e)–1(f). Independence on the driving strength
suggests that catalytic reactions on the swimmer surface
are reaction-limited and swimmer velocity is linearly
related to the driving strength both in and outside the
channel.
In addition, the numerical model allows us to explore the

effect of the channel zeta potential ζc, which is difficult to
change in experiments. Because the electro-osmotic flow is
linearly related to ζc, as we reduce the negative charge on
the channel, the facilitating backflow [Fig. 2(c)] becomes
weaker and the swimmer velocity in the channel decreases,
as shown in Fig. 2(d). When ζc becomes positive, the
backflow reverses its direction and hinders the swimmer
motion. At ζc ¼ 50 mV, the hindering backflow approx-
imately cancels the facilitating electrostatic effect and
V=V∘ is approximately 1. Further increasing ζc slows
the swimmer down and eventually reverses its motion
direction (V=V∘ < 0).
To further explore the parameter space, we vary the

swimmer length ls in simulations. Outside the channel,
swimmer velocity decreases with the swimmer length (inset
of Fig. 3), which agrees with the analytic results in
Refs. [21,22]. However, in channels, the swimmer length
dependence changes qualitatively and the longer swimmers

move faster (inset of Fig. 3), because the swimmer interacts
with the boundary over its whole length to generate
facilitating electrostatic and electrohydrodynamic effects
(cf. Supplemental Material [48]). To verify this surprising
simulation result, we fabricate AuRh swimmers of two
different mean lengths (2.7 and 3.7 μm). Measurements of
these AuRh swimmers are shown in Fig. 3 as solid symbols
and confirm the model prediction; the longer AuRh
swimmers speed up by 5 times in channels.
Discussion.—In conventional electrophoretic experi-

ments, an externally imposed electric field fills the system
and drives electro-osmotic flow over the whole channel
surface [59,60]. This is in clear contrast with the localized
electric and flow fields around phoretic swimmers and
leads to qualitatively different behaviors. For example, the
velocity of externally driven particles decreases as the
confinement (with surface charges of the same sign)
becomes tighter [59,60] and more elongated particles move
more slowly in confinement [60].
Previous studies have shown spatial confinement affects

hydrodynamic swimmers through no-slip flow condition at
boundaries [31–38]. For synthetic swimmers, new confine-
ment effects appear because boundaries alters both scalar
(concentration, temperature, or electric potential) and flow
fields [39–47]. In a theoretical study of strong confinement,
Popescu et al. [47] found that spherical boundary induces
an accelerating phoretic and a decelerating hydrodynamic
effect on a diffusiophoretic sphere. These two canceling
effects result in a small increase of swimmer velocity.
Chiang and Velegol [39] numerically studied an electro-
phoretic sphere near a flat surface and found that electro-
osmotic surface flow slows down the swimmer if the

FIG. 3. Normalized swimmer velocity V=V∘ increases with the
swimmer length. Swimmer velocities inside and outside channels
are shown in the inset. Numerical and experimental data are
shown by open and solid symbols, respectively. Experimental
data are measured with AuRh swimmers in linear channels with
w ¼ 1.2 and h ¼ 2 μm; Solutions with 15% H2O2 are used.
Default values (see text) are used for simulation parameters
except J ¼ 6 × 10−6 mol=m2=s and dc ¼ 2.3 μm.
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surface and swimmer are both negatively charged. This
[39] and other investigations on swimmers near open
boundaries [39–45] show confinement effects different
from our reported speed enhancement, highlighting the
critical role of confinement topology and its consequence
on swimmer motility.
Essential ingredients of our model, such as diffusive

driving field and slip surface flow, also appear in models for
diffusiophoretic and thermophoretic swimmers [21,22].
Similar confinement effects may exist in some of these
systems. For example, Brown et al. reported that a Pt/PS
swimmer changes it speed when confined in a colloidal
crystal [46]. However, intricate confining geometry, com-
plex propulsion mechanisms [65,66], and lack of system-
atic data make it difficult to identify possible reasons for
swimmer speed change in Ref. [46].
Last, synthetic swimmers were found to follow open

boundaries and researchers suggested to use this property
to steer swimmers [42,43]. Our work shows strongly
confining channels can not only steer bimetallic swimmers
but also modulate their velocities. This offers additional
possibilities in controlling bimetallic swimmers. Therefore,
tight spatial confinement may be a generally applicable
control method for phoretic microswimmers.
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