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A B S T R A C T

Precise manipulation of microparticles in microchannels is a primary technique for numerous lab-on-a-chip
bioengineering research and applications, as it determines the chip’s functions and analytical results. Acoustic
manipulation, using the acoustic radiation force, is a compact, versatile and contactless manipulation technique,
which can be easily integrated with other microfluidic components. It is our main purpose to report the effect of
boundary condition of a cylindrical microfluidic cavity on the acoustic particles’ manipulation. A device con-
sisting of a cylindrical cavity in a silicon wafer with three kinds of top boundary conditions (rigid, soft, and
imperfect rigid boundary) has been built. The corresponding distributions of acoustic radiation force are ana-
lyzed analytically and numerically. Experiments are performed with 2.5 μm radius polystyrene microspheres in
the cavity covered by three reflective layers (340 μm-thick glass, 400 μm-thick PDMS, and 660 μm-thick glass
film), respectively, which specify the three different boundary conditions at the top of the cavity. It is demon-
strated that the boundary condition of a cavity influences the acoustic radiation force and the stable positions of
particles, and this is in agreement with the theoretical predictions. Thus, the effects of boundary conditions need
to be considered for precise acoustic manipulation.

1. Introduction

The ability to perform precise and dexterous manipulation of micro-
sized particles in a microchannel is invaluable for many applications in
biology, chemistry, engineering and physics [1–16]. Manipulation of
particles by ultrasonic waves has been extensively studied since the
early 1900s. The basic principle of this technique involves the particles
in the acoustic field experiencing an acoustic radiation force (ARF) via
absorption and reflection. Compared to other manipulation technolo-
gies, such as magnetic or optical tweezers, and dielectrophoresis, ul-
trasonic manipulation has shown its advantages as being versatile, in-
expensive, and easily integrated with other microfluidic components. In
microfluidic applications, the ultrasonic standing wave is typically
used. Many works have been reported on the study of particles in a
standing field, including the fabrication of microfluidic channels for
standing field generation [9–11], theoretical calculations [17–19] and

experimental observations of the ARFs in the standing field for trap-
ping, moving, and sorting microparticles [15,20,21], cells and active
organisms [1–8].

An efficient device that generates an acoustic standing wave is to
excite harmonic resonance modes in a fluid-filled cavity or channel. It
commonly has a simple one-dimensional (1D) linear channel or two-
dimensional (2D) rectangular channel structure combined with lead
zirconate titanate (PZT) or interdigital transducer (IDT) sources to
generate a bulk standing wave in a channel or a surface standing wave
on the surface of the channel. When the channel wall is considered as a
rigid boundary, by adjusting the driving wavelength to match the width
or height of the microfluidic channel, generally, =lλ L2 ( =l 1, 2. ..
represents the mode of the vibration inside the channel, L is the di-
mension of the channel), 1D or 2D standing waves can be generated in
the microfluidic channel, and thus particles can be trapped on the
pressure node or antinode depending on the compressibility and density
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of the particles compared with those of the ambient fluid. By mod-
ulating the relative phase of the sources or slightly tuning the driving
frequency, the pressure node can be moved, thus inducing particle
motion accordingly [6,7].

Besides 1D linear or 2D rectangular channels, a cylindrical cavity
can also be used to generate a standing wave in the axial and radial
directions. For example, Kaduchak et al. constructed a hollow, cylind-
rical piezoelectric tube driven at the Bessel resonance mode in the ra-
dial direction to levitate and concentrate drops of water in air [9].
Yamahira et al. built a cylindrical vessel fixed on a stainless steel plate
with the transducer excited at the bottom to investigate the translation
and rotation of polystyrene (PS) fibers in the axial direction, while in
the radial direction no standing wave existed because the radius of the
cylinder did not match the corresponding wavelength [13]. In a similar
way, Wang et al. set up a cylindrical vessel by applying polyimide
Kapton tape with a height of =L λ0.5 while the radial scale was several
orders of the wavelength [14]. By using this cylindrical vessel, versatile
experimental phenomena were observed at the center plane of the
cavity, such as PS particles patterned with rings, streaks and aggrega-
tions, metal microrods motion in the axial direction, rotation in plane,
chain assembly and pattern formation [14]. These versatile patterns
and motion phenomena in the radial plane may be due to the complex
ARF distribution in this plane, which may originate from the intricate
boundary conditions and multiple modes excited in the cavity.

To comprehend the manipulation phenomena of micro-sized parti-
cles in microchannels, in this work, we theoretically and experimentally
investigate the effects of boundary conditions on acoustic manipulation
of particles in a cylindrical cavity. First, we present the analytical stu-
dies on ARF distribution in a cylindrical cavity considering rigid and
soft top boundary conditions. Then, the numerical and experimental
results of these manipulation phenomena of 2.5 μm radius PS micro-
spheres in a cylindrical cavity with three different kinds of top re-
flective layers, rigid (340 μm-thick glass), soft (400 μm-thick PDMS)
and imperfect rigid (660 μm-thick glass film) boundaries are presented.
Finally, we discuss the relationship between the stable manipulation
phenomena and the boundary conditions. The experimental results
coincide with the theoretical predictions that the stable trapping posi-
tions of the particles can be greatly affected by the boundary condi-
tions. We believe this work can provide experimental support for the
influence of boundary conditions on acoustic manipulation in a cy-
lindrical cavity.

2. Experiments and theoretical model

2.1. Experimental setup

A schematic view of the experimental setup is shown in Fig. 1. A
cylindrical cavity (height =L 186 μm, radius =a 419 μm) is dry-etched
in the surface of a silicon plate (thickness 440 μm). A piezoelectric
(PZT) plate as the actuator is mounted on the bottom of the silicon

plate. As two driving frequencies are utilized in the experiment, two
PZT plates with resonance frequencies of 4MHz (thickness 540 μm) and
6.28MHz (thickness 383 μm) are used, respectively. These PZT plates
are actuated using continuous sinusoidal electric signals (< 10 Vpp) by
a signal generator (AFG 3102, Tektronix, Beaverton, OR, USA) without
an amplifier. The cavity is filled with a 10wt% salt solution and
polystyrene (PS) microspheres (B1510021, Aladdin Industrial Corp.,
Shanghai, CN) with a radius of 2.5 μm. Initially, the PS particles are
suspended in the liquid as the densities of the liquid and the PS particles
are identical [13]. An optical microscope (N14JZBPB03-26, Leica, GER)
combined with a camera (optiMOS, QImaging, CA) is positioned di-
rectly above the cavity to image the pattern formation of the PS par-
ticles [15]. A reflective plate covers the cavity indicating the top
boundary. In order to indicate different top boundary conditions, we
choose a glass plate with thickness of 340 μm, a polydimethylsiloxane
(PDMS) plate with thickness of 400 μm, and a glass plate with thickness
of 660 μm to represent rigid, soft and imperfect rigid boundaries, re-
spectively. The acoustic properties of these three plates are investigated
in the following section of numerical model.

2.2. Analytical model

Consider a cylindrical cavity of height L and radius a, assuming that
the cylindrical wall boundaries and the bottom boundary are perfectly
rigid, while the top boundary of the cavity is determined by the prop-
erty of the reflective plate. The pressure of the eigen mode in this cavity
can be written as [22]:

= + +p A J k r mϕ ϕ k z φ( ) cos( ) cos( )emnl m mn m zl zl
ωti (1)

The quantum numbers m, n and l, (mnl) represent the normal mode in
ϕ, r and z coordinates. Amnl and ϕm denote the pressure amplitude and
initial phase. Since there are no reflecting boundaries for cylindrical
waves, ϕm can be considered as an arbitrary phase constant, letting

=ϕ 0m in the following calculations. As the rigid boundary condition in
the cylindrical wall, the wavenumber k in the radial direction can be
written as = ′k j a/mn mn , where ′jmn is the nth extremum of the mth Bessel
function of the first kind. kzl and φzl are determined by the top boundary
condition of the cavity. The wavenumberkis specified by

= = +k ω c k k/ ( )mn zl
2 2 1/2. In addition, the associated velocity field can be

derived from = ∇v i p ρω- /( ) [23].
It is well known that the ARF F radon a small, spherical particle

( ≪r λp ) in an inviscid fluid is the gradient of an acoustic potential U rad

[17,18,24],
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Fig. 1. (a) Schematic view of the experimental setup. (b) Geometry of the cylindrical cavity.
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wave at the point where the particle is located. The terms ρp and ρ refer
to the density, and cp and c refer to the speed of sound in the particles
and fluid, respectively, and r refers to the particle radius. The angle
brackets represent time-averaging.

After calculating the mean-square fluctuations of the acoustic
pressure and velocity and substituting them into Eq. (3), the di-
mensionless acoustic potential of the (mnl) mode in this cavity is
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where =χ k rmn and = +ζ k z φzl zl.
Thus, the dimensionless force components of the (mnl) mode in the
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2.3. Numerical model

To reduce computational cost in COMSOL software, we simplify the
experimental setup to an axis-symmetrical model, as shown in Fig. 2.
For exact modeling of the experimental structure, the cylindrical fluid
cavity (white) is modeled by the acoustic pressure module, the silicon
wafer (light gray) and reflective layer (dark gray) are modeled by the
linear elastic solid module. The piezoelectric plate is PZT-4 actuated in
the d33-mode with a driving voltage of 1 Vpp at frequency of 4MHz and
6.28MHz, which is modeled by coupling stresses and strains with

electric field and electric displacement [25]. The acoustic and elastic
domain are coupled with pressure and acceleration boundary condi-
tions on the solid-water interface. After obtaining the pressure and
velocity field in the cavity, the corresponding ARF acting on a 2.5 μm-
radius PS microsphere can be calculated by using Eq. (2) and Eq. (3).
The parameters of the materials used are given in Table 1 [25–32].

Three plates (a glass plate with thickness of 340 μm, a PDMS plate
with thickness of 400 μm, and a glass plate with thickness of 660 μm)
have been chosen for representation of different kinds of boundary in
our experiment. The reasons can be explained as follow. It is well
known that soft boundary condition is imposed when the solid medium
in contact with the fluid is not able to sustain any pressure, described by
the boundary condition =p 0, such as free interfaces of water to air. In
practice, the deformable elastic materials like PDMS walls might be
treated as this soft boundary condition [33]. We choose a PDMS plate
with thickness of 400 μm as a soft boundary. A hard boundary condition
in an ideal case represents that the interfacing medium does not yield to
the velocity of the liquid, i.e., total reflection of the pressure wave
( ∇ =n p· 0). Fig. 2(b) shows the reflection coefficient of the glass plate
at the interface of water and air (incident wave in water) with thickness
of 340 μm (black solid line) and 660 μm (red dashed line). It is clearly
illustrated that, at the frequency of 4MHz, the reflection coefficient of
the 340 μm-thick glass plate is almost 1, while the reflection coefficient
of the 660 μm-thick glass plate is about 0.64. Thus, the former with
thickness equal to a quarter wavelength [11] can be represented as a
hard boundary condition and the latter can be considered as an im-
perfect rigid boundary.

3. Results and discussion

3.1. Effects of the rigid top boundary condition

3.1.1. A. Analytical prediction
For this case, the boundary conditions for the cavity can be ex-

pressed as: ∂ ∂ = ∂ ∂ == =p z p z( / ) ( / ) 0z L z 0 . Substituting Eq. (1) into these
boundary conditions, the wavenumber in the z direction can be ob-
tained as =k lπ L/zlrigid , =l 0, 1, 2, ..., while =φ 0zl . For the frequency
4MHz, the height =L 186µm and radius =a 419 µm of the cavity in our
experiment are λ0.5 and λ1.127 , respectively. Thus, the cavity in this
case can support the (0 2 0) and (0 0 1) eigen modes.

Fig. 2. (a) Model for numerical simulation. It
consists of a reflective layer (dark gray), a cy-
lindrical cavity (white) dry-etched in a silicon
wafer (light gray) and a piezoelectric plate
(black). (b) The reflection of the glass plate with
thickness of 340 µm (black solid line) and
660 µm (red dashed line) from water to air.(For
interpretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article.)

Table 1
Material properties.

Density
(kg/m3)

Longitudinal
velocity (m/s)

Transverse
velocity (m/s)

Saline Water 1050 1490 0
Polystyrene (PS) 1050 2170 1100
Silicon 2329 9660 5340
Glass 2600 5521 3449
Polydimethylsiloxane

(PDMS)
965 750 80
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The amplitude and direction of the dimensionless ARF distribution
in the rz plane of the (0 2 0) mode and (0 0 1) mode are shown in Fig. 3a
and c, respectively. Fig. 3b and d detailedly illustrate the amplitude of
Fr (black solid line) and Fz (red dashed line) versus the position of the
white dashed lines in Fig. 3a and c, respectively. For the (0 2 0) mode,
the radial force Fr dominates, while Fz are always zero. In addition,
there are five critical points ( =F 0r ) in the radial direction. By analyze
the particle’s moving direction (blue arrow) according to the direction
of the adjacent radial restoring forces, =r a0.340 and =r a0.786 are the
stable localized positions [17]. For the (0 0 1) mode, Fz dominates while
Fr are always zero. Similarly, there are three critical points ( =F 0z ) in
the z direction and =z L0.5 is the stable localized position.

These two eigen modes can be excited individually when the wave
vector of the incident wave perfectly matches with that of the corre-
sponding eigen modes. Nevertheless, for the PZT plate as the actuator in
the experiment, the wave vector of the incident wave contains both the
radial and z-directional components, resulting in these two modes being
excited simultaneously. Thus, the stable positions for these PS particles
in the cavity may be the overlapped region of the positions of these two
modes, i.e., two circles in the =z L0.5 mid-plane with =r a0.340 and

=r a0.786 , respectively, as shown in Fig. 3e.

3.1.2. B. Numerical and experimental results
Fig. 4a shows the numerical map of the ARF in the rz plane at the

frequency of 4MHz with the top boundary of the 340 μm-thick glass
plate. It is observed that the maximum amplitude of force reaches 8 pN
and the stable trapping position ( =F 0) is a curved line around =z L0.5
in the rz plane. To further recognize the stable position, Fig. 4b illus-
trates the Fr (black solid line) and Fz (red dashed line) along the white

dashed line =z L0.5 in Fig. 4a. The particles are subject to the adjacent
radial restoring forces (blue arrow) till they are stably trapped at the
equilibrium position at =r a0.344 and =r a0.751 in the =z L0.5 plane.

Fig. 4c–e illustrate the experimental movements of the PS micro-
spheres in the =z L0.5 plane in a time series (see multimedia view 1). It
is clearly observed that after the PZT actuated with 83 s, a steady state
of PS microspheres can be reached with two circles ( a0.359 , a0.851 ) at

=z L0.5 , which agrees excellently well with the analytical (Fig. 3e) and
numerical predictions (Fig. 4a). Thus, the top boundary of the 340 μm-
thick glass plate can be considered as a perfect rigid boundary in this
cavity at frequency of 4MHz.

3.2. Effects of the soft top boundary condition

3.2.1. A. Analytical prediction
If the top wall is a soft surface, the boundary conditions can be

expressed as ∂ ∂ = == =p z p( / ) 0z z L0 . Substituting Eq. (1) into these
boundary conditions, the wavenumber in the z direction can be ob-
tained as = +k l π L( /2 0.25)2 /zlsoft , =l 0, 1, 2, ... while =φ 0zl . However,
at the frequency of 4MHz, this cavity cannot support any eigen mode.
When the frequency changes to 6MHz, as the corresponding wave-
length =λ 248 µm, the height and radius of the cavity are =L λ0.75 and

=a λ1.69 . In this case, the cavity can support the (0 3 0) and (0 0 1)
modes.

Fig. 5a and c show the dimensionless ARF distribution in the rz
plane of the (0 3 0) and (0 0 1) eigen modes, respectively. For the (0 3 0)
mode, both Fr andFz exist, while for the (0 0 1) mode =F 0r and Fz
dominates. To simplify the analysis, we first plot the normalized r
(black solid line) and z components (red dashed line) of the ARF for the

Fig. 3. The normalized ARF distribution of the (0 2 0) eigen mode (a) and the (0 0 1) eigen mode (c) in the rz plane of the cavity with the rigid top boundary condition
at the frequency of 4MHz. (b) and (d) show the Fr (black solid line) and Fz (red dashed line) versus the particle’s position at the white dashed line in (a) and (c),
respectively. The arrows in (b) and (d) indicate the particle’s moving direction by adjacent restoring ARFs. (e) The predicted stable localized positions of the PS
particles in the cavity with the rigid top boundary when these two eigen modes are excited simultaneously.(For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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(0 0 1) mode along the white dashed line =r a0.1 in the rz plane as
shown in Fig. 5d. It can be clearly observed that there are four critical
points in the z direction and =z L/3 is the stable localization position.
Thus, for the (0 3 0) mode, we plot two components of the ARF along

the white dashed line =z L/3 in the rz plane as shown in Fig. 5b. The
stable localization positions are indicated as =r a0.234 , =r a0.542 and

=r a0.824 where both Fr and Fz go to zero, and the blue arrows denote
the adjacent radial restoring forces indicating the particle’s moving

Fig. 4. (a) The numerical map of the total ARF acting on the PS microsphere located in the rz plane of the cylindrical cavity covered with the 340 μm-thick glass plate.
(b) The plot of the numerical Fr (black solid line) and Fz (red dashed line) versus the position of particle at the white dashed line =z L0.5 in (a), the arrows indicate
the particle’s moving direction by adjacent restoring ARFs. (c)–(e) The experimental movements of the PS microspheres in the cavity covered by the 340 μm-thick
glass film in the =z L0.5 plane at 4MHz.(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. The normalized ARF distribution of the (0 3 0) eigen mode (a) and the (0 0 1) eigen mode (c) in the rz plane of the cavity with the soft top boundary condition
at the frequency of 6MHz. (b) and (d) show the Fr (black solid line) and Fz (red dashed line) versus the particle’s position at the white dashed line in (a) and (c),
respectively. The arrows in (b) and (d) indicate the particle’s moving direction by adjacent restoring ARFs. (e) The predicted stable localized positions of the PS
particles in the cavity with the soft top boundary when these two eigen modes are excited simultaneously.(For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 6. The numerical map of the total ARF acting on a PS microsphere in the rz plane of the cylindrical cavity covered with the 400 μm-thick PDMS plate at the
frequency of 4MHz (a) and 6.28MHz (b). (c) The plot of the numerical Fr (black solid line) and Fz (red dashed line) versus the position of particle at the white dashed
line =z L/3 in (b), the arrows indicate the particle’s moving direction by adjacent restoring ARFs. The experimental movements of the PS microspheres in the cavity
covered by the 400 μm-thick PDMS plate at frequency of 4MHz (d) and 6.28MHz (e) in the =z L/3 plane.(For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 7. (a) The numerical map of the total ARF acting on a PS microsphere located in the rz plane of the cavity covered by the 660 μm-thick glass plate representing
the imperfect rigid boundary. The experimental status of the PS microspheres in the plane of =z 0 (b), =z L0.5 (c), and =z L (d) after the PZT actuated with 78 s.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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direction. Similarly, for the PZT plate as the actuator, these two modes
are excited simultaneously, thus the stable positions of PS particles in
the cavity could be three circles located at =r a0.234 , =r a0.542 ,

=r a0.824 in the =z L/3 plane as shown in Fig. 5e.

3.2.2. B. Numerical and experimental results
We first numerically investigate the ARF acting on the PS micro-

sphere in the rz plane of the cavity covered with the 400 μm-thick
PDMS plate at the frequency of 4MHz, as shown in Fig. 6a. It is ob-
served that the maximum magnitude of the ARF is just about 0.028 pN
which is much smaller than that of the rigid top boundary condition
with 8 pN. Thus, PS microspheres may not have stable positions in this
case. Then, we depict the corresponding ARF distribution acting on the
PS microsphere at the frequency of 6.28MHz in Fig. 6b, and the de-
tailed Fr and Fz along the white dashed line =z L/3 in Fig. 6c. The
maximum force is about 8 pN, which is two orders of magnitude larger
than that at 4MHz. Besides, the forces are equal to zero at these three
circles of =r a0.227 , a0.515 and a0.846 in the =z L/3 plane. PS mi-
crospheres may be stably localized at these positions.

In the experiment, we also first observe the movements of the PS
microspheres in the cavity covered with the 400-μm-thick PDMS plate
at the frequency of 4MHz. As shown in Fig. 6d and multimedia view 2,
the particles move very slowly and cannot be stably trapped. Then the
frequency is switched to 6.28MHz, these PS microspheres can be
trapped in three circles ( a0.262 , a0.593 , a0.909 ) at the =z L/3 plane
after about 50 s (Fig. 6e and multimedia view 2). On the whole, the
stable positions in the experiment coincide with that of theoretical
predictions, expect that some particles of the first inner circle are
slightly off the =z L/3 stable plane. This can be attributed to the fact
that the PDMS plate cannot be considered as a perfect soft boundary.

3.3. Effects of the imperfect rigid top boundary condition

For the case of the cavity covered with the imperfect rigid
boundary, it is difficult to analytically analyze the eigen modes and
corresponding ARFs. Thus, we just investigate this case numerically and
experimentally. Fig. 7a illustrates the numerical map of the ARF acting
on a PS microsphere in the rz plane at the frequency of 4MHz, while the
top boundary is the 660 μm-thick glass plate representing the imperfect
rigid boundary. The maximum amplitude of force is about 50 pN which
is comparable to that of the rigid boundary. In addition, there are four
force minima planes in the radial direction and no stable trapping plane
in the z direction. This is similar to the analytical solution of the eigen
mode (0 2 0) under the rigid top boundary (Fig. 3a) that the radial force
dominates. Thus, particles may be formed two circles at multiple planes
from =z 0 to =z L throughout the cavity.

The experimental status of these PS microspheres in the cavity
covered by the 660 μm-thick glass plate are shown in Fig. 7b–d at the
plane of =z 0, =z L0.5 and =z L, respectively. As expected, PS mi-
crospheres can be reached with two circles at multiple planes (multi-
media view 3). In addition, the first inner circle of the stable position
becomes larger as the position in the z direction gets higher. This
phenomenon agrees well with the numerical simulations.

4. Conclusions

We analytically, numerically and experimentally investigate the
effects of boundary conditions on acoustic manipulation of particles in a
cylindrical microfluidic cavity. The boundary conditions greatly influ-
ence on the eigen mode excitation of the cavity, as well as the ARF
distribution and the particles’ stable positions. The total reflective plate
with thickness equal to a quarter wavelength can be considered as the
rigid boundary, while the PDMS plate and the partly reflective plate can
be regarded as the soft and imperfect rigid boundary. These experi-
mental phenomena are in good agreement with the analytical and nu-
merical predictions. The present investigation demonstrates that the

effects of boundary conditions need to be considered for precise
acoustic manipulation.
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